THE SPERMALITE/SQA-V TECHNOLOGY

Medical Electronic Systems, Ltd

Description of the SQA-V

- High performance, analytical medical device
- Performs complete quantitative evaluation of semen quality and semen parameters
- Rapid results under 2 minutes
- Electro-optics, computer algorithms, video microscopy
- Internal printer, patient archive, self-testing, self-calibrating
- Runs latex beads controls
- Video visualization system

Automated Test Results

Conventional WHO Parameters	Format	
Total Sperm Concentration	TSC, M/ml	
% Motility	MOTILITY, %	
% Progressive Motility	PROG. MOTILITY, %	
% Immotility	IMMOTILITY, %	
% Normal Morphology (option to select WHO or Kruger criteria)	CALC. NORM. MORPH., %	
SQA-V Derived Parameters		
Motile Sperm Concentration	MSC, M/ml	
Progressively Motile Sperm Concentration	PMSC, M/ml	
Functional Sperm Concentration (Progressively Motile Sperm with Normal Morphology)	FSC, M/ml	
Average Velocity (Average path velocity – VAP)	VELOCITY, mic/s	
Sperm Motility Index (A number between 0=500 reflecting PMSC & average velocity)	SMI	
Totalized Quantities Per Sample		
Total Sperm	ALL SPERM, M	
Total Motile Sperm	MOT. SPERM, M	
Total Progressively Motile Sperm	PROG. SPERM, M	
Total Functional Sperm	FUNC. SPERM, M	

Reference Values of Semen Variables

SEMEN PARAMETER	SQA-V TEST FORMAT	REFERENCE RANGE	SOURCE
Sperm Concentration	TSC	≥ 20 M/ml	WHO' 99 MANUAL
Motility (grades a+b+c)	MOTILITY		Ser me
Progressive motility (grades a+b)	PROG. MOTILITY	≥ 50%	WHO' 99 MANUAL
Non Progressive motility (grade c)	NONPROG. MOTILITY	· · · · · · · · · · · · · · · · · · ·	the states
Immotility (grade d)	IMMOTILITY		a start of the
Morphology (Calculated Normal Morphology, WHO non-strict)	CALC. NORM. MORPH. (WHO)	≥ 30%-	WHO '92 MANUAL
Morphology (Calculated Normal Morphology, Kruger strict)	CALC. NORM. MORPH. (KRUGER)	≥ 15% (Under investigation)	WHO' 99 MANUAL
Motile Sperm Concentration	MSC		
Progressively Motile Sperm Concentration	PMSC	≥ 10%	MES Ltd.
Functional Sperm Concentration	FSC	≥ 7 M/ml (Non-strict Morph.) ≥ 3 M/ml (Kruger Morph.)	MES Ltd.
Velocity (Average path velocity – VAP)	VELOCITY	≥ 5 microns/second	MES Ltd.
Sperm Motility Index	SMI	≥ 80	MES Ltd.

Measurement of sperm concentration and motility begins with the capillary.....

Sample concentration is evaluated in the "Tall" chamber of the capillary.

Motility is evaluated in the "Thin" section of the capillary

- The SQA-V capillary is inserted into the measurement compartment
- Sample concentration is evaluated in the "Tall" chamber of the capillary by measuring:
 - The amount of optical absorption/reflection of light as an IR beam traverses the seminal fluid
- Motility is evaluated in the "Thin" section of the capillary by analyzing:
 - Modulations in the SQA-V light source caused by the movement of sperm cells

SQA-V Theory of Operation

Sperm Motility: Tens of thousands of cells are *measured*

- Light interruptions (modulations) are converted into an electronic signal that displays "peaks and valleys"
- The electronic signal peaks are averaged.
- This number is translated into motility via a proprietary algorithm

Sperm Motility:

- Because each category of sperm (a, b, c and d) move differently, the resulting modulations in the light source are unique and subsequently translate into unique electronic signals.
- Rapidly progressive sperm create light modulations that differ from those produced by slowly progressive sperm.
- Immotile sperm does not create any light disturbances at all!

Electronic Signal of Motile Sperm

Sperm Concentration Millions of sperm cells are analyzed

- A light beam traverses the seminal fluid and light is absorbed by sperm cells
- An optical density detector measures the amount of light absorbed by the cells
- This measurement is translated into total cell concentration by a microprocessor based on a proprietary algorithm

Sperm Morphology:

- This is a calculated parameter
- Based on a correlation between sperm motility and morphology, MES developed a proprietary algorithm that expresses NORMAL morphology as it relates to motility, progressive motility, and velocity
- This parameter is useful as a qualitative screen for normal vs. abnormal morphology

The Visualization System

- Color video display
- Magnification of X300 to X500
- Allows viewing of both capillary or slide samples
- At X300 cell concentration can be determined visually
- An interface with V-Sperm software allows the user to view sperm cells on a PC to more closely examine the specimen

Electronic Self-Test and Auto Calibration

- At start-up
 - Stabilization and auto-calibration: Automatically checks system stability and reference ranges for 30 seconds
 - System noise: The level of electronic noise is measured and filtered in order to meet acceptable thresholds
 - Self test: Electronic signals are produced simulating motility and concentration to verify calibration settings are consistent with factory settings

Electronic Self-Test and Auto Calibration

- Prior to sample testing:
 - Auto calibration verification: Reference values are re-checked. Concentration and motility parameters are measured
 - System noise: The level of electronic noise is measured and filtered in order to meet acceptable thresholds
 - Electronic spikes: Checks for any measurement points that are out of range electronically

Dynamic Range:

Sample Type	Test Mode	TSC M/ml	Motility %	Morph %	MSC M/ml	PMSC M/ml	#Sperm Cells/field
Fresh	Normal	5-400	0-90	0-100	0-400	0-400	-
Washed	Normal	2-200+	0-90	0-100	0-200+	0-200+	-
Frozen	Normal	-		-	0-200+	0-200+	-
All Types	High Sensitivity	-	-	-	0-2	-	0-30

 Precision: The precision and accuracy of the SQA-V was compared to a known concentration target value of commercially available latex beads.

SQA-V	Beads	CV %
	High 47 ± 7.0 M/ml	≤ 0.01
Variability	Low 24 ± 3.4 M/ml	≤ 0.01
Inter	High 47 ± 7.0 M/ml	≤ 2.00
Variability	Low 24 ± 3.4 M/ml	≤ 2.5

Specificity Claims:

- Concentration: 85%
- Motility: 80%
- Calculated Normal Morphology (WHO): 65%
- Calculated Normal Morphology (Kruger): 60%

Sensitivity Claims:

- Concentration: 90%
- Motility: 85%
- Calculated Normal Morphology (WHO): 85%
- Calculated Normal Morphology (Kruger): 65%

- Correlation to Manual Method Claim:
 - Concentration: 0.90
 - Motility: 0.85
 - Calculated Normal Morphology (WHO): 0.65
 - Calculated Normal Morphology (Kruger): 0.45

Product Performance Data Precision – Compared to Microscope

Parameter	Range	Method		
		SQA-V CV%	Microscope CV%	
Casar	Entire Range	3.1	6.1	
Sperm	5-40	5.2	5.9	
M/ml	41-80	2.1	5.5	
WINTI	>80	2.5	3.2	
	Entire Range	5.1	7.2	
Motility	10-50	7.6	10.3	
%	51-55	1.5	3.4	
	>55	6.0	4.1	

Post-vasectomy Mode:

Method Comparison of 218 Samples with Motile Cells	# Samples Motile Sperm Detected	% Samples Motile Sperm Detected
SQA-V Automated System and Visualization System	207	95%
Visualization System only	193	89%
Microscope only	161	74%

THE SPERMALITE/SQA-V TECHNOLOGY

- High performance, analytical medical device
- Performs complete quantitative evaluation of semen quality and semen parameters
- Rapid results under 2 minutes
- Electro-optics, computer algorithms, video microscopy
- Self-testing, self-calibrating
- Video visualization system

Human Sperm (Viewed through V-Sperm III)

